

T-cell engagers in ALL & AML

Marion Subklewe, M.D.

Head of the Cellular Immunotherapy Program at the LMU – University Hospital Munich Head of the Lab for Translational Cancer Immunology at the LMU – Gene Center Munich

Head of the Early Clinical Trial Unit

Head of Flow within the Lab for Leukemia Diagnostics

Subklewe Lab for Translational Cancer Immunology

Disclosures

Educational Grant:	BMS/Celgene, Gilead/Kite, Janssen, Novartis, Takeda
Research Support:	Amgen, Miltenyi, Molecular Partners, Roche, Seattle Genetics
Advisory Board:	Avencell, Ichnos, Incyte, Janssen, Molecular Partners, Novartis, Pfizer, Takeda
Speaker's Bureau:	Amgen, BMS/Celgene, Gilead/Kite, Novartis

Agenda

Disease Entity	Drug	Clinical Scenario / Translational Question	Reference		
ALL	Blinatumomab	R/R	Kantarjian et al; NEJM 2017		
		MRD	Gökbuget et al; Blood 2018		
		Resistance	Corrado et al; ASH 2023		
			Philipp et al; Blood 2022		
		Combination with TKI	Philipp et al; ASH 2023		
AML	AMG 330, AMG 673, Flotetuzumab and others	Suitable Target Antigens	Haubner et al, Leukemia 2019 Daver et al, Leukemia 2021		
		Clinical Trial Results	Subklewe, ASH 2019 Rezvani et al, ASH 2020 Hutschings et al, ASH 2023		
		Combination with co-stim bispecifics, IMiDs, STING agonists, VEN/AZA,	Augsberger et al, Blood 2021 Neumann et al, DGHO 2023 Nixdorf et al, ASH 2023 Hänel et al, Leukemia 2024		
ALL	Blinatumomab	MRD negative (<0.01 %)	Litzow MR, et al. ASH 2022		

Redirection of T cells by Bispecific Antibody Constructs (BsAbs or TCE)

Format impacts Pharmacokinetics, but its impact on Efficacy & Toxicity is unclear

Blinatumomab was the first, and still approved, T-cell engaging bispecific antibody

Approved in R/R Ph^{+/-} BCP-ALL (in Ph⁺after 2 TKIs) and MRD^{+ (0.1%)} BCP-ALL

However, Relapse and Lack of Response to Blinatumomab remain a Challenge in BCP-ALL

However, Relapse and Lack of Response to Blinatumomab remain a Challenge in BCP-ALL

Why do patients remain refractory or relapse after Blinatumomab?

Resistance to Blinatumomab: Tumor Intrinsic & Tumor Extrinsic Factors

Tumor-intrinsic factors

- 8-35% of relapses are CD19 negative¹
- 2.2% of BCP-ALL cases harbor PAX5 mutations², which impairs immune synapse formation
- PD-L1 upregulation has been described at relapse³

Tumor-extrinsic factors

 The percentage of circulating CD4⁺ CD25⁺ FOXP3⁺ is negatively associated with response to Blina⁴

Resistance to Blinatumomab: Tumor Intrinsic & Tumor Extrinsic Factors

Tumor-intrinsic factors

- 8-35% of relapses are CD19 negative¹
- 2.2% of BCP-ALL cases harbor PAX5 mutations², which impairs immune synapse formation
- PD-L1 upregulation has been described at relapse³

Tumor-extrinsic factors

 The percentage of circulating CD4⁺ CD25⁺ FOXP3⁺ is negatively associated with response to Blina⁴

Study Aim

• Characterize pretreatment peripheral blood T-cell features that are associated with response to Blinatumomab

Hypothesis: Continous Exposure to Bispecifics Induces T-cell Exhaustion

Philipp et al, Blood 2022

In Vitro Model System Mimics Continuous BsAb Exposure in Patients: loss of T-cell function

Treatment-Free Intervals Ameliorate T-Cell Exhaustion

padj<.05, Log2foldchange >1 or <-1

🔲 Continuous BsAb

2-way ANOVA and Sidak's multiple comparison test; n=3-9

TFI

BsAb re-exposure after TFI

Treatment-Free Intervals Ameliorate T-Cell Exhaustion

2-way ANOVA and Sidak's multiple comparison test; n=3-9

padj<.05, Log2foldchange >1 or <-1

Treatment-Free Intervals Ameliorate T-Cell Exhaustion

TFI

2-way ANOVA and Sidak's multiple comparison test; n=3-9

padj<.05, Log2foldchange >1 or <-1

Treatment Free Intervals (TFI) + BsAb vs Dasatinib + BsAb: Similar Results

D-ALBA Trial: Dasatinib followed by Dasatinib + Blinatumomab in de novo Ph+ BCP-ALL

Puzzolo et al. 2021, Blood

Blinatumomab + dasatinib or ponatinib in Ph⁺ ALL

The NEW ENGLAND JOURNAL of MEDICINE

ESTABLISHED IN 1812

OCTOBER 22, 2020 VOL. 383 NO. 17

Dasatinib–Blinatumomab for Ph-Positive Acute Lymphoblastic Leukemia in Adults

 Robin Foà, M.D., Renato Bassan, M.D., Antonella Vitale, M.D., Loredana Elia, M.D., Alfonso Piciocchi, M.S., Maria-Cristina Puzzolo, Ph.D., Martina Canichella, M.D., Piera Viero, M.D., Felicetto Ferrara, M.D.,
 Monia Lunghi, M.D., Francesco Fabbiano, M.D., Massimiliano Bonifacio, M.D., Nicola Fracchiolla, M.D.,
 Paolo Di Bartolomeo, M.D., Alessandra Mancino, M.S., Maria-Stefania De Propris, Ph.D., Marco Vignetti, M.D.,
 Anna Guarini, Ph.D., Alessandro Rambaldi, M.D., and Sabina Chiaretti, M.D., Ph.D., for the GIMEMA Investigators*

Foà et al. 2020 NEJM

THE LANCET Haematology

Volume 10, Issue 1, January 2023, Pages e24-e34

Articles

Ponatinib and blinatumomab for Philadelphia chromosome-positive acute lymphoblastic leukaemia: a US, single-centre, single-arm, phase 2 trial

 Prof Elias Jabbour MD^a[†] ∧ ⊠, Nicholas J Short MD^a[†], Nitin Jain MD^a,

 Prof Xuelin Huang PhD^b, Guillermo Montalban-Bravo MD^a, Pinaki Banerjee PhD^c,

 Prof Katayoun Rezvani MD^c, Xianli Jiang PhD^d, Kun Hee Kim^d, Rashmi Kanagal-Shamanna MD^e,

 Joseph D Khoury MD^e, Prof Keyur Patel MD^e, Prof Tapan M Kadia MD^a, Naval Daver MD^a,

 Kelly Chien MD^a, Yesid Alvarado MD^a, Prof Guillermo Garcia-Manero MD^a, Ghayas C Issa MD^a,

 Fadi G Haddad MD^a, Monica Kwari RN^a...Prof Hagop Kantarjian MD^a

Ponatinib can bind T315-mutated BCR-ABL

So far, only ADCs have received Approval in AML

Immunotherapy Platforms are at different stages of clinical development

An ideal Target Antigen is expressed on most AML cells + LSCs, critical for AML biology and absent on vital healthy cells

- Small Therapeutic Window: On-Target-Off-Leukemia Toxicity; Possible Impact on CRS Occurence
- Antigen Sink: Ubiquitous Expression of Internalizing Target Antigens like CD33, CD123, CLL-1
- **T-cell Dysfunction:** Chronic stimulation through continous antigen exposure within the (healthy) myeloid compartment
- Escape Variants: Heterogeneous expression profile Inter- and Intraindividually

An ideal Target Antigen is expressed on most AML cells + LSCs, critical for AML biology and absent on vital healthy cells

- Small Therapeutic Window: On-Target-Off-Leukemia Toxicity; Possible Impact on CRS Occurence
- Antigen Sink: Ubiquitous Expression of Internalizing Target Antigens like CD33, CD123, CLL-1
- **T-cell Dysfunction:** Chronic stimulation through continous antigen exposure within the (healthy) myeloid compartment
- Escape Variants: Heterogeneous expression profile Inter- and Intraindividually

Inactive Antibodies in Circulation and normal Tissue and Enhanced Activity within Tumors

Daver...Subklewe, Leukemia 2021

Cattaruzza et al. Nat. Cancer 2023; Kamata-Sakurai et al, Cancer Discovery 2021

An ideal Target Antigen is expressed on most AML cells + LSCs, critical for AML biology and absent on vital healthy cells

- Small Therapeutic Window: On-Target-Off-Leukemia Toxicity; Possible Impact on CRS Occurence
- Antigen Sink: Ubiquitous Expression of Internalizing Target Antigens like CD33, CD123, CLL-1
- **T-cell Dysfunction:** Chronic stimulation through continous antigen exposure within the (healthy) myeloid compartment
- Escape Variants: Heterogeneous expression profile Inter- and Intraindividually

Daver...Subklewe, Leukemia 2021

An ideal Target Antigen is expressed on most AML cells + LSCs, critical for AML biology and absent on vital healthy cells

- Small Therapeutic Window: On-Target-Off-Leukemia Toxicity; Possible Impact on CRS Occurence
- Antigen Sink: Ubiquitous Expression of Internalizing Target Antigens like CD33, CD123, CLL-1
- **T-cell Dysfunction:** Chronic stimulation through continous antigen exposure within the (healthy) myeloid compartment
- **Escape Variants:** Heterogeneous expression profile Inter- and Intraindividually

Daver...Subklewe, Leukemia 2021

The Lineage restricted, Myeloid Antigens CD33, CD123, CLL-1 are most commonly targeted

Current target antigens are of myeloid lineage: On-Target-Off-Leukemia Toxicity

Antigen	Description	bulk %	LSC	Normal tissue expression
CD33 (Siglec-3)	Transmembrane receptor	90	Yes	HSCs; myeloid progenitors, monocytes, mast cells, Kupffer cells, microglial cells in the brain
CD123 (IL-3Rα)	IL-3 receptor-α	50-100	Yes	HSCs; myeloid progenitors, monocytes, basophils, dendritic cells, epithelial cells
CLL1 (CLEC12A)	Transmembrane receptor	77-100	Yes	HSCs, Monocytes, granulocytes, tissue-resident lung macrophages
FLT3 (CD135)	Type III receptor tyrosine kinase	70-100	Yes	HSCs; myeloid progenitors, neurons
ADGRE2	Promotes cell-cell adhesion, granulocyte chemotaxis	> 80	Yes	Monocytes, macrophages, kupffer cells, granulocytes
CD44v6	Transmembrane receptor/splice variant	64	Yes	Monocytes, keratinocytes; different epithelial tissues (respiratory gastrointestinal, genitourinary)
Lewis Y (CD174)	Blood group carbohydrate antigen	50	Likely	HSCs; intestinal epithelial cells
CD45	Pan-Leukocyte Antigen	100, dim	Yes	Myeloid and Lymphoid Cells
FOLR2 (folate receptor-β)	Folate-binding protein receptor	70	Possibly	Myeloid cells, macrophages
IL1RAP	Component of IL-1 R complex	> 80	yes	Hepatocytes, placenta, monocytes, PBMCS
CD7	Transmembrane protein; member of the Ig superfamily	30	Possibly	T cells
NKG2D-L	Activator of NK and T cells:	67 – 100		NK cells, gamma/delta T cells
CD38	Activation marker of T cells	Up to 55%		Myeloid progenitor cells, lymphocytes
CD81	entry coreceptor for HCV	80	Yes	Hepatocytes, stroma and epithelial cells, Immune cells

Adapted from Schorr & Perna, Front Immunol 2022

ASH2023: Abstracts on Antigen Discovery: Halfond et al, #164; Lisi et al, #163; Gonzales et al, #168

Selected Early Clinical Trials in AML using T-cell engaging bispecific Antibodies

Ab type	CD33			CD123			CD123	CLL-1
	AMG330 ¹	AMG 673 ²	AMV-564 ³	Flotetuzumab ⁴	JNJ- 63709178 ⁵	Vibecotamab ⁶	SAR443579 ⁸⁻¹⁰	MCLA-117 ⁷
Structure								K409R F405L
Manufacturer	Amgen	Amgen	Amphivena	Macrogenics	Janssen	Xencor	Innate/Sanofi	Merus
Phase	1	1	1	1, RP2D	1	1/2	I/II	1
Ν	55	30	36	88	62	106	I/II	58
Histology	r/r AML, MRD⁺ AML	r/r AML	r/r AML	r/r AML	r/r AML	r/r AML, B- ALL, CML	43	r/r AML, ND elderly
Prior Therapies	≥1	≥4	≥1	≥2	1-10	1-8	r/rAML, B-ALL and MDS	0-≥4
CRS (grade ≥3)	67% (13%)	50% (13%)	n.a. (0%)	50% (7%)	44% (15%)	58% (15%)	1-10	36% (9%)

1. Ravandi F, et al. ASCO 2020. Abstract #7508. 2. Subklewe M, et al. ASH 2019. Abstract #833. 3. Westervelt P, et al. ASH 2019. Abstract #834. 4. Uy GL, et al. Blood 2021. 5. Boyiadzis M, et al. Clin Transl Sci. 2023 6. Ravandi F, et al. ASH 2020. Abstract #460. 7. Mascarenhas J, et al. EHA 2020. Abstract #538; 8. Labrijn et al, Nature Reviews Drug Discovery 2019; 9. Stein et al, ASH 2022; 10. Bajel et al, ASH 2023 #3474

Selected Early Clinical Trials in AML using T-cell engaging bispecific Antibodies

Ab type	CD33			CD123			CD123	CLL-1
	AMG330 ¹	AMG 673 ²	AMV-564 ³	Flotetuzumab ⁴	JNJ- 63709178⁵	Vibecotamab ⁶	SAR443579 ⁸⁻¹⁰	MCLA-117 ⁷
Structure								K409R F405L
Manufacturer	Amgen	Amgen	Amphivena	Macrogenics	Janssen	Xencor	Innate/Sanofi	Merus
Phase	1	1	1	1, RP2D	1	1/2	I/II	1
Ν	55	30	36	88	62	106	I/II	58
Histology	r/r AML, MRD⁺ AML	r/r AML	r/r AML	r/r AML	r/r AML	r/r AML, B- ALL, CML	43	r/r AML, ND elderly
Prior Therapies	≥1	≥4	≥1	≥2	1-10	1-8	r/rAML, B-ALL and MDS	0-≥4
CRS (grade ≥3)	67% (13%)	50% (13%)	n.a. (0%)	50% (7%)	44% (15%)	58% (15%)	1-10	36% (9%)

1. Ravandi F, et al. ASCO 2020. Abstract #7508. 2. Subklewe M, et al. ASH 2019. Abstract #833. 3. Westervelt P, et al. ASH 2019. Abstract #834. 4. Uy GL, et al. Blood 2021. 5. Boyiadzis M, et al. Clin Transl Sci. 2023 6. Ravandi F, et al. ASH 2020. Abstract #460. 7. Mascarenhas J, et al. EHA 2020. Abstract #538; 8. Labrijn et al, Nature Reviews Drug Discovery 2019; 9. Stein et al, ASH 2022; 10. Bajel et al, ASH 2023 #3474

Step up Dosing needed to mitigate CRS & multiple Steps required to achieve active dose

Selected Early Clinical Trials in AML using T-cell engaging bispecific Antibodies

Ab type	CD33			CD123			CD123	CLL-1
	AMG330 ¹	AMG 673 ²	AMV-564 ³	Flotetuzumab ^₄	JNJ- 63709178⁵	Vibecotamab ⁶	SAR443579 ⁸⁻¹⁰	MCLA-117 ⁷
Structure								K409R F40SL
Manufacturer	Amgen	Amgen	Amphivena	Macrogenics	Janssen	Xencor	Innate/Sanofi	Merus
Phase	1	1	1	1, RP2D	1	1/2	I/II	1
Ν	55	30	36	88	62	106	I/II	58
Histology	r/r AML, MRD⁺ AML	r/r AML	r/r AML	r/r AML	r/r AML	r/r AML, B- ALL, CML	43	r/r AML, ND elderly
Prior Therapies	≥1	≥4	≥1	≥2	1-10	1-8	r/rAML, B-ALL and MDS	0-≥4
CRS (grade ≥3)	67% (13%)	50% (13%)	n.a. (0%)	50% (7%)	44% (15%)	58% (15%)	1-10	36% (9%)
ORR	19%	44% (12/27)	49%	30%	n.a.	>0.75 µg/kg 14% (7/51)	5% (0 %)	n.a.
CR/CR _i	17% (7/42)	4% (1/27)	6% (2/35)	27% (8/30)	0%	10% (5/51)	12 %	0%

1. Ravandi F, et al. ASCO 2020. Abstract #7508. 2. Subklewe M, et al. ASH 2019. Abstract #833. 3. Westervelt P, et al. ASH 2019. Abstract #834. 4. Uy GL, et al. Blood 2021. 5. Boyiadzis M, et al. Clin Transl Sci. 2023 6. Ravandi F, et al. ASH 2020. Abstract #460. 7. Mascarenhas J, et al. EHA 2020. Abstract #538; 8. Labrijn et al, Nature Reviews Drug Discovery 2019; 9. Stein et al, ASH 2022; 10. Bajel et al, ASH 2023 #3474

Characterization of T cells during AML Progression

1. Move into first CR, ideally low or no MRD levels.

With a median follow-up of 43 months, median OS in MRD– patients was NR in the Blinatumomab arm vs 71.4 months in the control arm (HR, 0.42; 95% CI, 0.24–0.75; log rank P = 0.003)

2. Move to more restricted Target Antigens: Intracellular Antigens

Increase Specificity by targeting intracellular LAA: WT1_{RMF} (HLA-A2⁺) with TCR mimicky Ab

Augsberger, Hänel et al, Subklewe, Blood 2021, Hutschings et al, ASH 2023, first approval of this kind in uveal melanoma (Tebentafusp)

3 b. Use Combinatorial Strategies: Address Innate Immunity

- Limited sustained responses in AML
- Immunosuppressive tumor microenvironment
- Secretion of immune dampening metabolites by AML

Hypothesis:

The combination with a STING agonist has the potential to augment anti-leukemic activity

STING activation improves CD33 BiTE (AMG 330)-mediated cytotoxicity

3c. Combinatorial: Lenalidomide enhances WT1-TCB-mediated cytotoxicity

Augsberger et al. Blood 2021

TCE / BsAb: Use early (CR1) & in low disease burden (MRD⁺/MRD⁻)

3 d. Use Combinatorial Strategies: Combine with VEN/AZA

CTCB

WT1-TCB

Vehicle

WT1-TCB

Haenel et al. Subklewe, Leukemia 2024

Acknowledgements

Contact: marion.subklewe@med.uni-muenchen.de

@MSubklewe @LMU Immutherapy

Laboratory for Translational Cancer Immunology

Viktoria Blumenberg Veit Bücklein Francesco Corrado Gerulf Hänel Maryam Kazerani Alexandra Leutbecher Anetta Marcinek Anne-Sofie Neumann Daniel Nixdorf Simone Pentz

Nora Phillip Giulia Rappa Kai Rejeski Lisa Rohrbacher Michael Ruzika Sabine Sandner Monika Sponheimer Yingshuae Wang Lis Winter Jan Wulf

Gene Center Munich

Nadia Fenn Karl-Peter Hopfner Veit Hornung

Tobias Straube

Department of Medicine III – Oncology and Hematology

Louisa Adolph Michael v. Bergwelt Veit Bücklein Martin Dreyling Alicia Emhardt Lisa Frölich Friderieke Hildebrandt Giulia Magno

Anna Reischer David Dos Santos **Christian Schmidt** Sophia Stock Sebastian Theurich Michael Unterhalt Oliver Weigert

MUKLINIKUM

Laboratory of Leukemia Diagnostics

Veit Bücklein Elke Habben **Tobias Herold** Bianca Kirschbaum

Bianca Kostrau Stephanie Schneider Karsten Spiekermann Ewelina Zientara

Phillip Karschnia

Florian Schöberl

Michael Winkelmann

LMU – Department of ATMZH, Neurology, Neurosurgery, Radiology, Nuclear Medicine, IZB

Natalie Albert Louisa von Baumgarten Eva Hoster Andreas Humpe

Omar Albanyan Michael Jain Frederick Locke Ariel Perez

Moffitt Cancer Center

USA

FRANCE Hospices Civils de Lyon Emmanuel Bachy Laurent Jallades Gilles Salles (MSKCC) **Pierre Sesques**

Barcelona **SPAIN** Vall d'Hebron Barcelona Pere Barba Cecilia Carpio

Moffitt

Florida

Gloria Iacoboni DKTK

German Cancer Consortium

CRC TRR 338

DFG

munich **biotech**

Elitenetzwerk Bayern

Deutsche Forschungsgemeinschaft

GERMANY **University Hospital Tübingen** Wolfgang Bethge **Christoph Faul**

Erlangen

eldelberg in

University Hospital Erlangen Andreas Mackensen Fabian Müller Sam Völkl

Regensburg

Innsbruck

LMU München

Berlin Charité Lars Bullinger **Olaf Penack**

Heidelberg Christoph Stein-Thöringen Michael Schmidt

